Warming Up Neural Network Basics

Cornell CS 5740: Natural Language Processing Yoav Artzi, Spring 2023

Table of Contents

- A very quick introduction to neural networks
- Architecture basics and matrix notation
- Some practical tips
- Computation graphs

A Little Bit of History Neural Networks

- Neural network algorithms date to the 1980s, and design trace their origin to the 1950s
	- Originally inspired by early neuroscience
- Historically slow, complex, and unwieldy
- Now: term is abstract enough to encompass almost any model – but useful!
- Dramatic shift started around 2013-15 away from MaxEnt (linear, convex) to *neural networks* (non-linear architecture, nonconvex)

The Promise Neural Networks

- Non-neural ML works well because of humandesigned representations and input features
- ML becomes just optimizing weights
- **Representation learning** attempts to automatically learn good features and representations
- **Deep learning** attempts to learn multiple levels of representation of increasing complexity/ abstraction

The Neuron Building Blocks

- Neural networks traditionally come with their own terminology baggage
	- Some of it is less common in more recent work
- Parameters:
	- Inputs: *xi*
	- Weights: w_i and b
	- Activation function *f*
- If we drop the activation function, reminds you of something?

Hidden Layers Building Blocks

- It gets interesting when you connect and stack neurons
- This modularity is one of the greatest strengths of neural networks
- Input vs. hidden vs. output layers
- The activations of the hidden layers are the learned representation

 $h_1 = a_1 W'_{11} + a_2 W'_{21} + a_3 W'_{31} + b'_1$ $h_4 = a_1 W'_{14} + a_2 W'_{24} + a_3 W'_{34} + b'_4$ $h_2 = a_1 W'_{12} + a_2 W'_{22} + a_3 W'_{32} + b'_1$ $h_3 = a_1 W'_{13} + a_2 W'_{23} + a_3 W'_{33} + b'_1$

$$
o_1 = h_1 W_{11}'' + h_2 W_{21}'' + h_3 W_{31}'' + h_4 W_{41}'' + b_1''
$$

$$
o_2 = h_1 W_{12}'' + h_2 W_{22}'' + h_3 W_{32}'' + h_4 W_{42}'' + b_2''
$$

 $h_1 = a_1 W'_{11} + a_2 W'_{21} + a_3 W'_{31} + b'_1$ $h_4 = a_1 W'_{14} + a_2 W'_{24} + a_3 W'_{34} + b'_4$ $h_2 = a_1 W'_{12} + a_2 W'_{22} + a_3 W'_{32} + b'_1$ $h_3 = a_1 W'_{13} + a_2 W'_{23} + a_3 W'_{33} + b'_1$

 $h = aW' + b'$ $\mathbf{o} = \mathbf{h}\mathbf{W}'' + \mathbf{b}''$ $=$ $(aW' + b')W'' + b''$

$$
o_1 = h_1 W_{11}'' + h_2 W_{21}'' + h_3 W_{31}'' + h_4 W_{41}'' + b_1''
$$

$$
o_2 = h_1 W_{12}'' + h_2 W_{22}'' + h_3 W_{32}'' + h_4 W_{42}'' + b_2''
$$

 $h_1 = a_1 W'_{11} + a_2 W'_{21} + a_3 W'_{31} + b'_1$ $h_4 = a_1 W'_{14} + a_2 W'_{24} + a_3 W'_{34} + b'_4$ $h_2 = a_1 W'_{12} + a_2 W'_{22} + a_3 W'_{32} + b'_1$ $h_3 = a_1 W'_{13} + a_2 W'_{23} + a_3 W'_{33} + b'_1$

$$
o_1 = h_1 W_{11}'' + h_2 W_{21}'' + h_3 W_{31}'' + h_4 W_{41}'' + b_1''
$$

$$
o_2 = h_1 W_{12}'' + h_2 W_{22}'' + h_3 W_{32}'' + h_4 W_{42}'' + b_2''
$$

$$
h = aW' + b'
$$

\n
$$
o = hW'' + b''
$$

\n
$$
= (aW' + b')W'' + b''
$$

\n
$$
a \in \mathbb{R}^{1 \times 3}
$$

\n
$$
W' \in \mathbb{R}^{3 \times 4}
$$

\n
$$
W'' \in \mathbb{R}^{4 \times 2}
$$

\n
$$
b' \in \mathbb{R}^{1 \times 4}
$$

\n
$$
b' \in \mathbb{R}^{1 \times 2}
$$

\n
$$
b \in \mathbb{R}^{1 \times 2}
$$

\n
$$
o \in \mathbb{R}^{1 \times 2}
$$

Activation Functions Building Blocks

Activation (non-linearity) function is an entry-wise function *f* : ℝ → ℝ

Probabilistic Outputs Building Blocks

- What if we want the output to be a probability distribution over possible outputs?
	- So far: output are just real numbers
- Normalize the output activations o using softmax
- Assume your want a distribution over $y_1, ..., y_n$ (i.e., $p(y_i)$)

$$
\mathbf{o} = \begin{pmatrix} o_1 \\ o_2 \\ \vdots \\ o_n \end{pmatrix} \qquad y = \text{softmax}(\mathbf{o})
$$

$$
p(y_i) = \text{softmax}(\mathbf{o}_i) = \frac{\mathbf{e}^{o_i}}{\sum_{j=1}^{n} \mathbf{e}^{o_j}}
$$

- Essentially: (1) make the value positive; and (2) normalize
- Usually: no non-linearity before the softmax

One-hot Word Representations Building Blocks

- So far, words (and features) are atomic symbols:
	- "hotel", "conference", "walking", "___ing"
- But neural networks take continuous vector inputs
- How can we bridge this gap?
- One-hot vectors

 $\text{hotel} = [0 \ 0 \ 0 \ \cdots 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0]$ conference = $[0 \ 0 \ 0 \ \cdots 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0]$

- Dimensionality: size of the vocabulary
	- Can be >10M for web-scale corpora
- Problems?

Building Blocks

One-hot Word Representations

• One-hot vectors

 $\text{hotel} = [0 \ 0 \ 0 \ \cdots 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0]$ $\text{conference} = [0 \ 0 \ 0 \ \cdots 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0]$

- Problems?
	- Information sharing? "hotel" vs. "hotels"

Word Embeddings Building Blocks

- Each word is represented using a dense low-dimensional vector
	- Low-dimensional << vocabulary size
- If trained well, similar words will have similar vectors
- How to train? What objective to maximize?
	- As part of task training (e.g., supervised training)
	- Pre-training (more on this later)

Training Neural Networks

- No hidden layer \rightarrow supervised
	- Just like perceptron, but gradient based
- With hidden layers:
	- Latent units \rightarrow not convex
	- What do we do?
		- ‣ Back-propagate the gradient
		- ‣ Based on the chain rule
		- ‣ About the same, but no guarantees

- One of the most basic neural models
- Example: sentiment classification
	- Input: text document
	- Classes: very positive, positive, neutral, negative, very negative
- We discussed doing this with a bag-of-words feature-based model
- What would be the neural equivalent?

- One of the most basic neural models
- Example: sentiment classification
	- Input: text document
	- Classes: very positive, positive, neutral, negative, very negative
- We discussed doing this with a bag-of-words feature-based model
- What would be the neural equivalent?
	- Concatenate all vectors?

- One of the most basic neural models
- Example: sentiment classification
	- Input: text document
	- Classes: very positive, positive, neutral, negative, very negative
- We discussed doing this with a bag-of-words feature-based model
- What would be the neural equivalent?
	- Concatenate all vectors?
		- \rightarrow Problem: different documents \rightarrow different input length
	- Instead: sum, average, etc.

Deep Averaging Networks (Iyyer et al. 2015)

IMDB Sentiment Analysis

*It's not common to put nonlinearity before a softmax

Classify Word Pair

- Goal: build a classifier that given a pair of words, classify if they are the full name of a person or not
- The classifier is a multi-layerperceptron with three layers
- Make a drawing!
- Write the matrix notation, including dimensionality of matrices (choose as you wish, and as needed)
- What are the parameters to be learned

Inputs: x_l, x_r |Input vocabulary: $\mathscr V$ Embedding function: $\phi : \mathcal{V} \to \mathbb{R}^{256}$ W eight matrices: $\mathbf{W}^1, \mathbf{W}^2, \mathbf{W}^3$ Bias vectors: \mathbf{b}^1 , \mathbf{b}^2 , \mathbf{b}^3 **Operations:** $2 \times \sigma : \mathbb{R}^* \to \mathbb{R}^*.1 \times \text{softmax}$

Practical Tips

- If you control the model (i.e., not using a pre-trained model)
	- Select network structure appropriate for the problem
		- ‣ Window vs. recurrent vs. recursive (will discuss throughout the semester)
	- Parameter initialization
	- Model is powerful enough?
		- ‣ If not, make it larger
		- ‣ Yes, so regularize, otherwise it will overfit
- Gradient checks to identify bugs
	- If you build from scratch
- Know your non-linearity function and its gradient
	- Example $tanh(x)$

$$
\frac{\partial}{\partial x}\tanh(x) = 1 - \tanh^2(x)
$$

Debugging Practical Tips

- Verify value of initial loss when using softmax
- Perfectly fit a single example, then mini-batch, then train
- If learning fails completely, maybe gradients stuck
	- Check learning rate
	- Verify parameter initialization
	- Change non-linearity functions

Avoid Overfitting Practical Tips

- Very expressive models, can overfit easily
	- It will look great on the training data, but everything else will be terrible
- Some potential cures \bigoplus
	- Reduce model size (but not too much)
	- L1 and L2 regularization
	- Early stopping (e.g., patience)
	- Learning rate scheduling
	- Dropout (Hinton et al. 2012)
		- ‣ Randomly set 50% of inputs in each layer to 0

Computation Graphs

- The descriptive language of deep learning models
- Functional description of the required computation
- Can be instantiated to do two types of computation:
	- Forward computation
	- Backward computation

expression:

y = x>Ax + b *·* x + *c*

graph:

A **node** is a {tensor, matrix, vector, scalar} value

 $\overline{}$ *pointers to nodes.* expose An **edge** represents a function argument (and also data dependency). They are just

dae's t A **node** with an incoming **edge** is a **function** of that edge's tail node.

A **node** knows how to compute its value and the *value of its derivative w.r.t each argument (edge) times a derivative of an arbitrary input* $\frac{\partial \mathcal{F}}{\partial f(\mathbf{u})}$.

$\mathbf{x}^{\top} \mathbf{A}$ expression:

graph:

Functions can be nullary, unary, binary, … *n*-ary. Often they are unary or binary.

$\mathbf{x}^\top \mathbf{A} \mathbf{x}$ expression:

graph:

Computation graphs are directed and acyclic (usually)

$\mathbf{x}^\top \mathbf{A} \mathbf{x}$ expression:

graph:

$\mathbf{x}^\top \mathbf{A} \mathbf{x} + \mathbf{b} \cdot \mathbf{x} + c$ expression:

$$
\begin{aligned}\n\text{expression:} \\
y &= \mathbf{x}^\top \mathbf{A} \mathbf{x} + \mathbf{b} \cdot \mathbf{x} + c\n\end{aligned}
$$

variable names are just labelings of nodes.

Algorithms Computation Graphs

- **• Graph construction**
- **• Forward propagation**
	- Loop over nodes in topological order
		- \sim Compute the value of the node given its inputs
	- *Given my inputs, make a prediction (or compute an "error" with respect to a "target output")*
- **• Backward propagation**
	- Loop over the nodes in reverse topological order starting with a final goal node
		- ‣ Compute derivatives of final goal node value with respect to each edge's tail node
	- *How does the output change if I make a small change to the inputs?*

Draw the Computation Graph MLP

$$
\mathbf{h}^{1} = \sigma([\phi(x_{l}); \phi(x_{r})] \mathbf{W}^{1} + \mathbf{b}^{1})
$$

$$
\mathbf{h}^{2} = \sigma(\mathbf{h}_{1} \mathbf{W}^{2} + \mathbf{b}^{2})
$$

$$
\mathbf{p} = \text{softmax}(\mathbf{h}^{2} \mathbf{W}^{3} + \mathbf{b}^{3})
$$

Constructing Graphs

Two Software Models

- Static declaration
	- Phase 1: define an architecture (maybe with some primitive flow control like loops and conditionals)
	- Phase 2: run a bunch of data through it to train the model and/or make predictions
- Dynamic declaration (a.k.a define-by-run)
	- Graph is defined implicitly (e.g., using operator overloading) as the forward computation is executed
	- Graph is constructed dynamically
	- This allows incorporating conditionals and loops into the network definitions easily

Batching

- Two senses to processing your data in batch
	- Computing gradients for more than one example at a time to update parameters during learning
	- Processing examples together to utilize all available resources
- CPU: made of a small number of cores, so can handle some amount of work in parallel
- GPU: made of thousands of small cores, so can handle a lot of work in parallel
- Process multiple examples together to use all available cores

Batching

- Relatively easy when the network looks exactly the same for all examples
- More complex with language data: documents/sentences/words have different lengths
- Frameworks provide different methods to help common cases, but still require work on the developer side
- Key concept is broadcasting: <https://pytorch.org/docs/stable/notes/broadcasting.html>

Batching MLP Sketch

Batching Rough Notation Sketch

$$
\mathbf{X}^{(j)} = [x_1, ..., x_{n^{(j)}}], x_i \in 1, ..., |\mathcal{V}|
$$

\n
$$
\mathbf{a} = \frac{1}{|\mathbf{X}^{(j)}|} \text{sum} (\phi(\mathbf{X}^{(j)}))
$$

\n
$$
\mathbf{h}_1 = \sigma(\mathbf{W}_1 \mathbf{a} + \mathbf{b}_1)
$$

\n
$$
\mathbf{h}_2 = \mathbf{W}_2 \mathbf{h}_1 + \mathbf{b}_2
$$

\n
$$
p = \text{softmax}(\mathbf{h}_2)
$$

\n
$$
\mathbf{X}^{(j)} = [x'_1, ..., x'_M], x'_i = \begin{cases} x_i & i \le n^{(j)} \\ 0 & \text{else} \end{cases}
$$

\n
$$
\mathbf{B} = [\mathbf{X}^{(j)}, ..., \mathbf{X}^{(j+B)}]
$$

\n
$$
\mathbf{a} = [\frac{1}{n^{(j)}}, ..., \frac{1}{n^{(j+B)}}] \text{sum} (\phi(\mathbf{B}))
$$

\n
$$
\mathbf{h}_1 = \sigma(\mathbf{W}_1 \mathbf{a} + \mathbf{b}_1)
$$

\n
$$
\mathbf{h}_2 = \mathbf{W}_2 \mathbf{h}_1 + \mathbf{b}_2
$$

\n
$$
p = \text{softmax}(\mathbf{h}_2)
$$

Not accurate notation, for illustration only

- You have to get certain operations right, such as sum
- But PyTorch's broadcasting sorts out most operations

Batching

Complex Network Architectures

- Complex networks may include different parts with varying length (more about this later)
- In the extreme, it may be complex to batch complete examples this way
- But: you can still batch sub-parts across examples, so you alternate between batched and nonbatched computations

Documents

Acknowledgements

- Slides adapted from or inspired by Dan Klein, Dan Jurafsky, Chris Manning, Michael Collins, Luke Zettlemoyer, Yejin Choi, and Slav Petrov
- Some slides were adapted from **Practical Neural Networks for** [NLP](https://github.com/clab/dynet_tutorial_examples) / Chris Dyer, Yoav Goldberg, Graham Neubig / EMNLP 2016