Warming Up

Neural Network Basics

Cornell CS 5740: Natural Language Processing
Yoav Artzi, Spring 2023

1

Table of Contents

* A very quick introduction to neural networks

Architecture basics and matrix notation

Some practical tips

Computation graphs

Neural Networks
A Little Bit of History

* Neural network algorithms date to the 1980s,
and design trace their origin to the 1950s

- Originally inspired by early neuroscience

* Historically slow, complex, and unwieldy

 Now: term is abstract enough to encompass
almost any model - but useful!

e Dramatic shift started around 2013-15 away
from MaxEnt (linear, convex) to neural
networks (non-linear architecture, non-
convex)

Neural Networks

The Promise

* Non-neural ML works well because of human-
designed representations and input features

ML becomes just optimizing weights

* Representation learning attempts to
automatically learn good features and
representations

* Deep learning attempts to learn multiple levels
of representation of increasing complexity/
abstraction

Building Blocks

The Neuron

* Neural networks traditionally come with

their own terminology baggage

- Some of it is less common in more

recent work

* Parameters:
- Inputs: X;
- Weights: w; and b
- Activation function f

 If we drop the activation function,
reminds you of something?

L wo

*@® synapse
axon from a neuron
woxo

cell body

Zwi:c,: +b

w1

§ (Zwa: + b)

output axon

activation

WoXs function

Building Blocks

Hidden Layers

|t gets interesting when you
connect and stack neurons

e This modularity is one of
the greatest strengths of
neural networks

* Input vs. hidden vs. output
layers

* The activations of the
hidden layers are the
learned representation

input layer

‘i’ g g output layer

input layer
hidden layer

:0
7
AN

L5
VS’

4
\
.

)

tput layer

hidden layer 1 hidden layer 2

Building Blocks

Matrix Notation

input layer

hidden layer

0 activation/non-linearity function

Building Blocks
Matrix Notation
hl — aIWil + a2Wél + a3Wél + bi

output layer
input layer

hidden layer

oy = Wi + bWy, + s W3 + Wy + by
0y = Wiy + bW, + hsWiy + iy Wy, + by

8
No activation/non-linearity function

Building Blocks
Matrix Notation

hl — aIWil + a2Wél -+ a3Wél + bi , ,
hy = a,W!, + a, W, + asWi, + b h=aW'+b
hy = a\Wi3+ a, W53 + a3 W35 + by 0=hW"+Db”

hy = a\Wiy+ a,Wy, + asW3, + by . (aW, + b/)W// + b”

output layer
input layer

hidden layer

oy = MW + hh,Ws, + s W3 + Wy, + by
0y = MW, + haWos + s Wi, + Wi, + by

9
No activation/non-linearity function

Building Blocks

Matrix Notation
h = a Wy + W5, + a3Wy + by , ,
hy = a,W!, + a, W, + asWi, + b h=aW'+b
hy = aiWis + ;W3 + as Wiz + by o0 =hW"+ b”

hy = a\Wiy+ a,Wy, + asW3, + by . (aW/_l_ b/)W//_l_ b”

= R1X3
W' e R¥>4
W” e R¥?
output layer b’ € RI>4
hidden layer b’ € R1*?

h = R1X4
oy = MW + hh,Ws, + s W3 + Wy, + by 0 € R!*?
0y = MW, + haWos + s Wi, + Wi, + by

Learned

input layer

10
No activation/non-linearity function

Building Blocks

Activation Functions

Activation (non-linearity) function is
an entry-wise functionf: R - R

Sigmoid | Leaak(% I;leLl)J m
max(0.1z, z

o(z) = 1—1—(15_‘” ’

tanh Maxout

tanh(x) o max(wi x + by, wl z + bo)

ReLU / ELU J
0 T x>0

maX(7517) _w) {a(ew— 1) z<0 - - .

11

Building Blocks

Probabilistic Outputs

What if we want the output to be a probability distribution over possible outputs?

- So far: output are just real numbers

Normalize the output activations 0 using softmax

« Assume your want a distribution over yy, ..., y, (i.e., p(,))
(0;) y = softmax(o)
02 eoi
0= _ _
p(y;) = softmax(o;) = — >
Sy =1

Essentially: (1) make the value positive; and (2) normalize

Usually: no non-linearity before the softmax

12

Building Blocks

One-hot Word Representations

So far, words (and features) are atomic symbols:

FE 11 L1 1 7

- “hotel”, “conference”, “walking”, “___ing

But neural networks take continuous vector inputs

How can we bridge this gap?

One-hot vectors

hotel=10 O O ---0 O
conference=[0 O O 0 O

Dimensionality: size of the vocabulary

- Can be >10M for web-scale corpora

Problems?

13

Building Blocks

One-hot Word Representations

* One-hot vectors

hotel
conference

o 00 001 O0O0O0O0O0 O]
o 00 0 00O0O0OO0OT1TO0 O]
 Problems?

- Information sharing? “hotel” vs. “hotels”

14

Building Blocks

Word Embeddings

 Each word is represented using a dense low-dimensional vector
- Low-dimensional << vocabulary size

* If trained well, similar words will have similar vectors

 How to train? What objective to maximize?
- As part of task training (e.g., supervised training)

- Pre-training (more on this later)

15

Training Neural Networks

* No hidden layer — supervised
- Just like perceptron, but gradient based
o With hidden layers:
- Latent units — not convex
- What do we do?
> Back-propagate the gradient
> Based on the chain rule

> About the same, but no guarantees

16

Neural Bag of Words

One of the most basic neural models

Example: sentiment classification
- Input: text document

- Classes: very positive, positive, neutral, negative, very negative

We discussed doing this with a bag-of-words feature-based model

What would be the neural equivalent?

17

Neural Bag of Words

One of the most basic neural models

Example: sentiment classification
- Input: text document

- Classes: very positive, positive, neutral, negative, very negative

We discussed doing this with a bag-of-words feature-based model

What would be the neural equivalent?

- Concatenate all vectors?

18

Neural Bag of Words

One of the most basic neural models

Example: sentiment classification
- Input: text document

- Classes: very positive, positive, neutral, negative, very negative

We discussed doing this with a bag-of-words feature-based model

What would be the neural equivalent?
- Concatenate all vectors?
> Problem: different documents — different input length

- Instead: sum, average, etc.

19

Neural Bag of Words

Deep Averaging Networks (lyyer et al. 2015)

softmax

L | |A| | | ho = f(Wz - hy + bo)

[T Jhi=f(Wi-av+b)
4
=2 %
=1
HEEEE AN NN IEEEEN
Predator is a masterpiece
C1 Co C3 C4q

IMDB Sentiment Analysis

BOW + smoothing + SVM 88.23 les
It’s not common to put non-

NBOW DAN 89.4 linearity before a softmax

20

Classify Word Pair

« Goal: build a classifier that given a
pair of words, classify if they are
the full name of a person or not

* The classifier is a multi-layer-
perceptron with three layers

e Make a drawing!

e Write the matrix notation,
including dimensionality of
matrices (choose as you wish,
and as needed)

 What are the parameters to be
learned

21

Inputs: x;, x,

Input vocabulary: 7

Embedding function: ¢ : 7" — R3¢
Weight matrices: W!, W2 W?

Bias vectors: b!, b%, b’

Operations: 2 X o : R* - R*,1 X softmax

Practical Tips

« If you control the model (i.e., not using a pre-trained model)
- Select network structure appropriate for the problem
» Window vs. recurrent vs. recursive (will discuss throughout the semester)
- Parameter initialization
- Model is powerful enough?
> If not, make it larger
» Yes, so regularize, otherwise it will overfit
» Gradient checks to identify bugs

tanh(x)

- If you build from scratch 1

« Know your non-linearity function and its gradient

- Example tanh(x) 2 i

0
. —tanh(x) = 1 — tanh?(x)
ox

22

Practical Tips
Debugging

 \erify value of initial loss when using softmax
» Perfectly fit a single example, then mini-batch, then train
 If learning fails completely, maybe gradients stuck

- Check learning rate

- Verify parameter initialization

- Change non-linearity functions

23

Practical Tips
Avoid Overfitting

» Very expressive models, can overfit easily

- It will look great on the training data, but everything else will be terrible
« Some potential cures @

- Reduce model size (but not too much)

- L1 and L2 regularization

Early stopping (e.g., patience)

Learning rate scheduling

Dropout (Hinton et al. 2012)

> Randomly set 50% of inputs in each layer to O

24

Computation Graphs

* The descriptive language of deep learning models

* Functional description of the required computation

* Can be instantiated to do two types of computation:
- Forward computation

- Backward computation

25

expression:

X

graph:

A node is a {tensor, matrix, vector, scalar} value

®

26

An edge represents a function argument
(and also data dependency). They are just
pointers to nodes.

A node with an incoming edge is a function of that
edge’s tail node.

A node knows how to compute its value and the
value of its derivative w.r.t each argument (edge)

OF

times a derivative of an arbitrary input 5

flu)=u! 0f(w) OF :< OF)T
ou 9f(u) \9f(u)

27

expression:
x' A
graph:

Functions can be nullary, unary,
binary, ... n-ary. Often they are unary or binary.

f(U,V)=UV

28

expression:
x| Ax

graph:

Computation graphs are directed and acyclic (usually)

29

expression:
x| Ax

graph:

f(x,A) =x"Ax

ofRo

of(x,A) _
T (A" + A)x

8f(X7A) _ T
8A = XX

30

expression:
x Ax+b-x+¢

graph:

31

expression:
y=lx"Ax+b-x+c

graph:

variable names are just labelings of nodes.

32

Computation Graphs
Algorithms

- Graph construction
+ Forward propagation
- Loop over nodes in topological order
> Compute the value of the node given its inputs

- Given my inputs, make a prediction (or compute an “error” with respect to a “target
output”)

- Backward propagation
- Loop over the nodes in reverse topological order starting with a final goal node
> Compute derivatives of final goal node value with respect to each edge’s tail node

- How does the output change if | make a small change to the inputs?

33

Forward Propagation

graph:

Forward Propagation

graph:

Forward Propagation

graph:

Forward Propagation

graph:

Forward Propagation

graph:

Forward Propagation

graph:

Forward Propagation

graph:

Forward Propagation

graph:

MLP

Draw the Computation Graph

h' = 6([p(x); Pp(x)]W' + b')
h? = 6(h, W? + b?)
p = softmax(h’W? + b’)

42

Constructing Graphs

Two Software Models

e Static declaration

- Phase 1: define an architecture
(maybe with some primitive flow control like loops and conditionals)

- Phase 2: run a bunch of data through it to train the model and/or make
predictions

* Dynamic declaration (a.k.a define-by-run)

- Graph is defined implicitly (e.g., using operator overloading) as the forward
computation is executed

- Graph is constructed dynamically

- This allows incorporating conditionals and loops into the network
definitions easily

43

Batching

 Two senses to processing your data in batch

- Computing gradients for more than one example at a time to
update parameters during learning

- Processing examples together to utilize all available resources

 CPU: made of a small number of cores, so can handle some
amount of work in parallel

 GPU: made of thousands of small cores, so can handle a lot of
work in parallel

* Process multiple examples together to use all available cores

44

Batching

* Relatively easy when the network looks exactly the same for all
examples

 More complex with language data: documents/sentences/words
have different lengths

 Frameworks provide different methods to help common cases,
but still require work on the developer side

* Key concept is broadcasting:
https://pytorch.org/docs/stable/notes/broadcasting.html

45

https://pytorch.org/docs/stable/notes/broadcasting.html

Batching

MLP Sketch
h = tanh(Wx + b) fluv)=utv
y=Vh+ta f(M,v) =Mv

 Input and intermediate results
become tensors — batch is
another dimension!

Do not add batch dimension

of parameters! What happens
" then?

Batching

Rough Notation Sketch

g X(j)=[x1,...,xn(j)],xi€ 1,,|%|
N\

0‘5@?\ a =gy sum (X))
O h, =6(W,a+b))
h, =W,h, + b,
p = softmax(h,)
(\Q X0) — [, ooy], X = {xi i <n
6(‘\\ - - 0 else
Q)(;)& B =XV, . . XUt
1 1
a= [~ o~ lsum (¢(B))
h,=c(W,a+b))
h,=W,h, +b,

p = softmax(h,)

47

Not accurate
notation, for
illustration only

You have to get certain
operations right, such as sum

But PyTorch’s broadcasting
sorts out most operations

Batching

Complex Network Architectures

Sentences

 Complex networks may SH
include different parts with
varying length (more about
this later)

* In the extreme, it may be

complex to batch Alice gave message 1o Bob
complete examples this D : j [[U
Way J d D J 7| D

* But: you can still batch Documents
sub-parts across
examples, SO you alternate D) f D« This film was completely unbelievable.
between batched and non- DO« The characters were wooden and the plot was absurd.
batched computations '

D OO« That being said, I liked it.

48

Acknowledgements

» Slides adapted from or inspired by Dan Klein, Dan Jurafsky, Chris

Manning, Michael Collins, Luke Zettlemoyer, Yejin Choi, and Slav
Petrov

 Some slides were adapted from Practical Neural Networks for
NLP / Chris Dyer, Yoav Goldberg, Graham Neubig / EMNLP 2016

49

https://github.com/clab/dynet_tutorial_examples
https://github.com/clab/dynet_tutorial_examples
https://github.com/clab/dynet_tutorial_examples
https://github.com/clab/dynet_tutorial_examples

