Warming Up Neural Network Basics

Cornell CS 5740: Natural Language Processing Yoav Artzi, Spring 2023

Table of Contents

- A very quick introduction to neural networks
- Architecture basics and matrix notation
- Some practical tips
- Computation graphs

Neural Networks A Little Bit of History

- Neural network algorithms date to the 1980s, and design trace their origin to the 1950s
 - Originally inspired by early neuroscience
- Historically slow, complex, and unwieldy
- Now: term is abstract enough to encompass almost any model – but useful!
- Dramatic shift started around 2013-15 away from MaxEnt (linear, convex) to *neural networks* (non-linear architecture, nonconvex)

Neural Networks

The Promise

- Non-neural ML works well because of humandesigned representations and input features
- ML becomes just optimizing weights
- Representation learning attempts to automatically learn good features and representations
- Deep learning attempts to learn multiple levels of representation of increasing complexity/ abstraction

Building Blocks The Neuron

- Neural networks traditionally come with their own terminology baggage
 - Some of it is less common in more recent work
- Parameters:
 - Inputs: x_i
 - Weights: w_i and b
 - Activation function f
- If we drop the activation function, reminds you of something?

Building Blocks Hidden Layers

- It gets interesting when you connect and stack neurons
- This modularity is one of the greatest strengths of neural networks
- Input vs. hidden vs. output layers
- The activations of the hidden layers are the learned representation

$$\begin{split} h_1 &= a_1 W_{11}' + a_2 W_{21}' + a_3 W_{31}' + b_1' \\ h_2 &= a_1 W_{12}' + a_2 W_{22}' + a_3 W_{32}' + b_1' \\ h_3 &= a_1 W_{13}' + a_2 W_{23}' + a_3 W_{33}' + b_1' \\ h_4 &= a_1 W_{14}' + a_2 W_{24}' + a_3 W_{34}' + b_4' \end{split}$$

$$\begin{split} o_1 &= h_1 W_{11}'' + h_2 W_{21}'' + h_3 W_{31}'' + h_4 W_{41}'' + b_1'' \\ o_2 &= h_1 W_{12}'' + h_2 W_{22}'' + h_3 W_{32}'' + h_4 W_{42}'' + b_2'' \end{split}$$

$$\begin{split} h_1 &= a_1 W_{11}' + a_2 W_{21}' + a_3 W_{31}' + b_1' \\ h_2 &= a_1 W_{12}' + a_2 W_{22}' + a_3 W_{32}' + b_1' \\ h_3 &= a_1 W_{13}' + a_2 W_{23}' + a_3 W_{33}' + b_1' \\ h_4 &= a_1 W_{14}' + a_2 W_{24}' + a_3 W_{34}' + b_4' \end{split}$$

$$\begin{split} o_1 &= h_1 W_{11}'' + h_2 W_{21}'' + h_3 W_{31}'' + h_4 W_{41}'' + b_1'' \\ o_2 &= h_1 W_{12}'' + h_2 W_{22}'' + h_3 W_{32}'' + h_4 W_{42}'' + b_2'' \end{split}$$

$$\begin{split} h_1 &= a_1 W_{11}' + a_2 W_{21}' + a_3 W_{31}' + b_1' \\ h_2 &= a_1 W_{12}' + a_2 W_{22}' + a_3 W_{32}' + b_1' \\ h_3 &= a_1 W_{13}' + a_2 W_{23}' + a_3 W_{33}' + b_1' \\ h_4 &= a_1 W_{14}' + a_2 W_{24}' + a_3 W_{34}' + b_4' \end{split}$$

$$\begin{split} o_1 &= h_1 W_{11}'' + h_2 W_{21}'' + h_3 W_{31}'' + h_4 W_{41}'' + b_1'' \\ o_2 &= h_1 W_{12}'' + h_2 W_{22}'' + h_3 W_{32}'' + h_4 W_{42}'' + b_2'' \end{split}$$

$$h = aW' + b'$$

$$o = hW'' + b''$$

$$= (aW' + b')W'' + b''$$

$$a \in \mathbb{R}^{1 \times 3}$$

$$W' \in \mathbb{R}^{3 \times 4}$$

$$W'' \in \mathbb{R}^{4 \times 2}$$

$$b' \in \mathbb{R}^{1 \times 4}$$

$$b'' \in \mathbb{R}^{1 \times 2}$$

$$h \in \mathbb{R}^{1 \times 4}$$

$$o \in \mathbb{R}^{1 \times 2}$$

Building Blocks Activation Functions

Activation (non-linearity) function is an entry-wise function $f : \mathbb{R} \to \mathbb{R}$

Building Blocks Probabilistic Outputs

- What if we want the output to be a probability distribution over possible outputs?
 - So far: output are just real numbers
- Normalize the output activations \boldsymbol{o} using softmax
- Assume your want a distribution over y_1, \ldots, y_n (i.e., $p(y_i)$)

- Essentially: (1) make the value positive; and (2) normalize
- Usually: no non-linearity before the softmax

Building Blocks

One-hot Word Representations

- So far, words (and features) are atomic symbols:
 - "hotel", "conference", "walking", "___ing"
- But neural networks take continuous vector inputs
- How can we bridge this gap?
- One-hot vectors

- Dimensionality: size of the vocabulary
 - Can be >10M for web-scale corpora
- Problems?

Building Blocks

One-hot Word Representations

• One-hot vectors

- Problems?
 - Information sharing? "hotel" vs. "hotels"

Building Blocks Word Embeddings

- Each word is represented using a dense low-dimensional vector
 - Low-dimensional << vocabulary size
- If trained well, similar words will have similar vectors
- How to train? What objective to maximize?
 - As part of task training (e.g., supervised training)
 - Pre-training (more on this later)

Training Neural Networks

- No hidden layer \rightarrow supervised
 - Just like perceptron, but gradient based
- With hidden layers:
 - Latent units \rightarrow not convex
 - What do we do?
 - Back-propagate the gradient
 - Based on the chain rule
 - About the same, but no guarantees

- One of the most basic neural models
- Example: sentiment classification
 - Input: text document
 - Classes: very positive, positive, neutral, negative, very negative
- We discussed doing this with a bag-of-words feature-based model
- What would be the neural equivalent?

- One of the most basic neural models
- Example: sentiment classification
 - Input: text document
 - Classes: very positive, positive, neutral, negative, very negative
- We discussed doing this with a bag-of-words feature-based model
- What would be the neural equivalent?
 - Concatenate all vectors?

- One of the most basic neural models
- Example: sentiment classification
 - Input: text document
 - Classes: very positive, positive, neutral, negative, very negative
- We discussed doing this with a bag-of-words feature-based model
- What would be the neural equivalent?
 - Concatenate all vectors?
 - Problem: different documents \rightarrow different input length
 - Instead: sum, average, etc.

Deep Averaging Networks (lyyer et al. 2015)

IMDB Sentiment Analysis

BOW + smoothing + SVM	88.23
NBOW DAN	89.4

*It's not common to put nonlinearity before a softmax

Classify Word Pair

- Goal: build a classifier that given a pair of words, classify if they are the full name of a person or not
- The classifier is a multi-layerperceptron with three layers
- Make a drawing!
- Write the matrix notation, including dimensionality of matrices (choose as you wish, and as needed)
- What are the parameters to be learned

Inputs: x_l, x_r Input vocabulary: \mathscr{V} Embedding function: $\phi : \mathscr{V} \to \mathbb{R}^{256}$ Weight matrices: $\mathbf{W}^1, \mathbf{W}^2, \mathbf{W}^3$ Bias vectors: $\mathbf{b}^1, \mathbf{b}^2, \mathbf{b}^3$ Operations: $2 \times \sigma : \mathbb{R}^* \to \mathbb{R}^*, 1 \times \text{softmax}$

Practical Tips

- If you control the model (i.e., not using a pre-trained model)
 - Select network structure appropriate for the problem
 - · Window vs. recurrent vs. recursive (will discuss throughout the semester)
 - Parameter initialization
 - Model is powerful enough?
 - ► If not, make it larger
 - Yes, so regularize, otherwise it will overfit
- Gradient checks to identify bugs
 - If you build from scratch
- Know your non-linearity function and its gradient
 - Example tanh(x)

$$\frac{\partial}{\partial x} \tanh(x) = 1 - \tanh^2(x)$$

Practical Tips Debugging

- Verify value of initial loss when using softmax
- Perfectly fit a single example, then mini-batch, then train
- If learning fails completely, maybe gradients stuck
 - Check learning rate
 - Verify parameter initialization
 - Change non-linearity functions

Practical Tips Avoid Overfitting

- Very expressive models, can overfit easily
 - It will look great on the training data, but everything else will be terrible
- Some potential cures 兽
 - Reduce model size (but not too much)
 - L1 and L2 regularization
 - Early stopping (e.g., patience)
 - Learning rate scheduling
 - Dropout (Hinton et al. 2012)
 - Randomly set 50% of inputs in each layer to 0

Computation Graphs

- The descriptive language of deep learning models
- Functional description of the required computation
- Can be instantiated to do two types of computation:
 - Forward computation
 - Backward computation

expression:

 \mathbf{X}

graph:

A **node** is a {tensor, matrix, vector, scalar} value

 \mathbf{X}

An **edge** represents a function argument (and also data dependency). They are just pointers to nodes.

A **node** with an incoming **edge** is a **function** of that edge's tail node.

A **node** knows how to compute its value and the value of its derivative w.r.t each argument (edge) times a derivative of an arbitrary input $\frac{\partial \mathcal{F}}{\partial f(\mathbf{u})}$.

expression: $\mathbf{x}^{\top} \mathbf{A}$

graph:

Functions can be nullary, unary, binary, ... *n*-ary. Often they are unary or binary.

expression: $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}$

graph:

Computation graphs are directed and acyclic (usually)

expression: $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}$

graph:

expression: $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b} \cdot \mathbf{x} + c$

expression:
$$y = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b} \cdot \mathbf{x} + c$$

variable names are just labelings of nodes.

Computation Graphs Algorithms

- Graph construction
- Forward propagation
 - Loop over nodes in topological order
 - Compute the value of the node given its inputs
 - Given my inputs, make a prediction (or compute an "error" with respect to a "target output")
- Backward propagation
 - Loop over the nodes in reverse topological order starting with a final goal node
 - Compute derivatives of final goal node value with respect to each edge's tail node
 - How does the output change if I make a small change to the inputs?

Forward Propagation

Forward Propagation

Forward Propagation

MLP Draw the Computation Graph

$$\mathbf{h}^{1} = \sigma([\phi(x_{l}); \phi(x_{r})]\mathbf{W}^{1} + \mathbf{b}^{1})$$
$$\mathbf{h}^{2} = \sigma(\mathbf{h}_{1}\mathbf{W}^{2} + \mathbf{b}^{2})$$
$$\mathbf{p} = \operatorname{softmax}(\mathbf{h}^{2}\mathbf{W}^{3} + \mathbf{b}^{3})$$

Constructing Graphs

Two Software Models

- Static declaration
 - Phase 1: define an architecture (maybe with some primitive flow control like loops and conditionals)
 - Phase 2: run a bunch of data through it to train the model and/or make predictions
- Dynamic declaration (a.k.a define-by-run)
 - Graph is defined implicitly (e.g., using operator overloading) as the forward computation is executed
 - Graph is constructed dynamically
 - This allows incorporating conditionals and loops into the network definitions easily

Batching

- Two senses to processing your data in batch
 - Computing gradients for more than one example at a time to update parameters during learning
 - Processing examples together to utilize all available resources
- CPU: made of a small number of cores, so can handle some amount of work in parallel
- GPU: made of thousands of small cores, so can handle a lot of work in parallel
- Process multiple examples together to use all available cores

Batching

- Relatively easy when the network looks exactly the same for all examples
- More complex with language data: documents/sentences/words
 have different lengths
- Frameworks provide different methods to help common cases, but still require work on the developer side
- Key concept is broadcasting: <u>https://pytorch.org/docs/stable/notes/broadcasting.html</u>

Batching MLP Sketch

Batching Rough Notation Sketch

1.

$$\mathbf{X}^{(j)} = [x_1, ..., x_{n^{(j)}}], x_i \in 1, ..., |\mathcal{V}|$$

$$\mathbf{a} = \frac{1}{|\mathbf{X}^{(j)}|} \operatorname{sum} (\phi(\mathbf{X}^{(j)}))$$

$$\mathbf{h}_1 = \sigma(\mathbf{W}_1 \mathbf{a} + \mathbf{b}_1)$$

$$\mathbf{h}_2 = \mathbf{W}_2 \mathbf{h}_1 + \mathbf{b}_2$$

$$p = \operatorname{softmax}(\mathbf{h}_2)$$

$$\mathbf{X}^{'(j)} = [x'_1, ..., x'_M], x'_i = \begin{cases} x_i & i \le n^{(j)} \\ 0 & \text{else} \end{cases}$$

$$\mathbf{B} = [\mathbf{X}^{'(j)}, ..., \mathbf{X}^{'(j+B)}]$$

$$\mathbf{a} = [\frac{1}{n^{(j)}}, ..., \frac{1}{n^{(j+B)}}] \operatorname{sum} (\phi(\mathbf{B}))$$

$$\mathbf{h}_1 = \sigma(\mathbf{W}_1 \mathbf{a} + \mathbf{b}_1)$$

$$\mathbf{h}_2 = \mathbf{W}_2 \mathbf{h}_1 + \mathbf{b}_2$$

$$p = \operatorname{softmax}(\mathbf{h}_2)$$

Not accurate notation, for illustration only

- You have to get certain operations right, such as sum
- But PyTorch's broadcasting sorts out most operations

Batching

Complex Network Architectures

- Complex networks may include different parts with varying length (more about this later)
- In the extreme, it may be complex to batch complete examples this way
- But: you can still batch sub-parts across examples, so you alternate between batched and nonbatched computations

Documents

Acknowledgements

- Slides adapted from or inspired by Dan Klein, Dan Jurafsky, Chris Manning, Michael Collins, Luke Zettlemoyer, Yejin Choi, and Slav Petrov
- Some slides were adapted from <u>Practical Neural Networks for</u> <u>NLP</u> / Chris Dyer, Yoav Goldberg, Graham Neubig / EMNLP 2016